Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network

Author:

Yoo Gilsang1,Kim Hyeoncheol2,Hong Sungdae3

Affiliation:

1. Creative Informatics and Computing Institute, Korea University, Seoul 02841, Republic of Korea

2. College of Informatics, Korea University, Seoul 02841, Republic of Korea

3. Division of Design, Seokyeong University, Seoul 02713, Republic of Korea

Abstract

In recent years, the development of adaptive models to tailor instructional content to learners by measuring their cognitive load has become a topic of active research. Brain fog, also known as confusion, is a common cause of poor performance, and real-time detection of confusion is a challenging and important task for applications in online education and driver fatigue detection. In this study, we propose a deep learning method for cognitive load recognition based on electroencephalography (EEG) signals using a long short-term memory network (LSTM) with an attention mechanism. We obtained EEG signal data from a database of brainwave information and associated data on mental load. We evaluated the performance of the proposed LSTM technique in comparison with random forest, Adaptive Boosting (AdaBoost), support vector machine, eXtreme Gradient Boosting (XGBoost), and artificial neural network models. The experimental results demonstrated that the proposed approach had the highest accuracy of 87.1% compared to those of other algorithms, including random forest (64%), AdaBoost (64.31%), support vector machine (60.9%), XGBoost (67.3%), and artificial neural network models (71.4%). The results of this study support the development of a personalized adaptive learning system designed to measure and actively respond to learners’ cognitive load in real time using wireless portable EEG systems.

Funder

Basic Science Research Program through the National Research Foundation of Korea

Ministry of Education

Publisher

MDPI AG

Subject

Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3