DeepCOVID-Fuse: A Multi-Modality Deep Learning Model Fusing Chest X-rays and Clinical Variables to Predict COVID-19 Risk Levels

Author:

Wu Yunan1ORCID,Dravid Amil2,Wehbe Ramsey Michael3,Katsaggelos Aggelos K.12

Affiliation:

1. Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60201, USA

2. Department of Computer Science, Northwestern University, Evanston, IL 60201, USA

3. The Division of Cardiology, Department of Medicine and Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Chicago, IL 60611, USA

Abstract

The COVID-19 pandemic has posed unprecedented challenges to global healthcare systems, highlighting the need for accurate and timely risk prediction models that can prioritize patient care and allocate resources effectively. This study presents DeepCOVID-Fuse, a deep learning fusion model that predicts risk levels in patients with confirmed COVID-19 by combining chest radiographs (CXRs) and clinical variables. The study collected initial CXRs, clinical variables, and outcomes (i.e., mortality, intubation, hospital length of stay, Intensive care units (ICU) admission) from February to April 2020, with risk levels determined by the outcomes. The fusion model was trained on 1657 patients (Age: 58.30 ± 17.74; Female: 807) and validated on 428 patients (56.41 ± 17.03; 190) from the local healthcare system and tested on 439 patients (56.51 ± 17.78; 205) from a different holdout hospital. The performance of well-trained fusion models on full or partial modalities was compared using DeLong and McNemar tests. Results show that DeepCOVID-Fuse significantly (p < 0.05) outperformed models trained only on CXRs or clinical variables, with an accuracy of 0.658 and an area under the receiver operating characteristic curve (AUC) of 0.842. The fusion model achieves good outcome predictions even when only one of the modalities is used in testing, demonstrating its ability to learn better feature representations across different modalities during training.

Publisher

MDPI AG

Subject

Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3