Biomechanics of the JCT and SC Inner Wall Endothelial Cells with Their Basement Membrane Using 3D Serial Block-Face Scanning Electron Microscopy

Author:

Karimi Alireza12,Razaghi Reza1ORCID,Kelley Mary J.13,Acott Ted S.14ORCID,Gong Haiyan56ORCID

Affiliation:

1. Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA

2. Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97208, USA

3. Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR 97208, USA

4. Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97208, USA

5. Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA

6. Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA

Abstract

Background: More than ~70% of the aqueous humor exits the eye through the conventional aqueous outflow pathway that is comprised of the trabecular meshwork (TM), juxtacanalicular tissue (JCT), the inner wall endothelium of Schlemm’s canal (SC). The flow resistance in the JCT and SC inner wall basement membrane is thought to play an important role in the regulation of the intraocular pressure (IOP) in the eye, but current imaging techniques do not provide enough information about the mechanics of these tissues or the aqueous humor in this area. Methods: A normal human eye was perfusion-fixed and a radial wedge of the TM tissue from a high-flow region was dissected. The tissues were then sliced and imaged using serial block-face scanning electron microscopy. Slices from these images were selected and segmented to create a 3D finite element model of the JCT and SC cells with an inner wall basement membrane. The aqueous humor was used to replace the intertrabecular spaces, pores, and giant vacuoles, and fluid–structure interaction was employed to couple the motion of the tissues with the aqueous humor. Results: Higher tensile stresses (0.8-kPa) and strains (25%) were observed in the basement membrane beneath giant vacuoles with open pores. The volumetric average wall shear stress was higher in SC than in JCT/SC. As the aqueous humor approached the inner wall basement membrane of SC, the velocity of the flow decreased, resulting in the formation of small eddies immediately after the flow left the inner wall. Conclusions: Improved modeling of SC and JCT can enhance our understanding of outflow resistance and funneling. Serial block-face scanning electron microscopy with fluid–structure interaction can achieve this, and the observed micro-segmental flow patterns in ex vivo perfused human eyes suggest a hypothetical mechanism.

Funder

NIH/NEI

Lewis Rudin Glaucoma Prize

Research to Prevent Blindness Foundation

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3