Word Structure Tunes Electrophysiological and Hemodynamic Responses in the Frontal Cortex

Author:

Gao Fei12,Hua Lin13,He Yuwen13,Xu Jie4,Li Defeng14,Zhang Juan15,Yuan Zhen13ORCID

Affiliation:

1. Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China

2. Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China

3. Faculty of Health Sciences, University of Macau, Macau SAR 999078, China

4. Faculty of Arts and Humanities, University of Macau, Macau SAR 999078, China

5. Faculty of Education, University of Macau, Macau SAR 999078, China

Abstract

To date, it is still unclear how word structure might impact lexical processing in the brain for languages with an impoverished system of grammatical morphology such as Chinese. In this study, concurrent electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) recordings were performed to inspect the temporal and spatial brain activities that are related to Chinese word structure (compound vs. derivation vs. non-morphological) effects. A masked priming paradigm was utilized on three lexical conditions (compound constitute priming, derivation constitute priming, and non-morphological priming) to tap Chinese native speakers’ structural sensitivity to differing word structures. The compound vs. derivation structure effect was revealed by the behavioral data as well as the temporal and spatial brain activation patterns. In the masked priming task, Chinese derivations exhibited significantly enhanced brain activation in the frontal cortex and involved broader brain networks as compared with lexicalized compounds. The results were interpreted by the differing connection patterns between constitute morphemes within a given word structure from a spreading activation perspective. More importantly, we demonstrated that the Chinese word structure effect showed a distinct brain activation pattern from that of the dual-route mechanism in alphabetic languages. Therefore, this work paved a new avenue for comprehensively understanding the underlying cognitive neural mechanisms associated with Chinese derivations and coordinate compounds.

Funder

Education Fund of Macao SAR Government

the University of Macau

Macao Science and Technology Development Fund

Publisher

MDPI AG

Subject

Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3