Prediction of the Proximal Humerus Morphology Based on a Statistical Shape Model with Two Parameters: Comparison to Contralateral Registration Method

Author:

van Schaardenburgh Florianne E.1,Nguyen H. Chien23ORCID,Magré Joëll23,Willemsen Koen3ORCID,van Rietbergen Bert1,Nijs Stefaan4ORCID

Affiliation:

1. Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

2. Department of Orthopaedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

3. 3D Lab, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

4. Division Surgical Specialties, Department Trauma Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

Abstract

(1) Background: Complex proximal humerus fractures often result in complications following surgical treatment. A better understanding of the full 3D displacement would provide insight into the fracture morphology. Repositioning of fracture elements is often conducted by using the contralateral side as a reconstruction template. However, this requires healthy contralateral anatomy. The purpose of this study was to create a Statistical Shape Model (SSM) and compare its effectiveness to the contralateral registration method for the prediction of the humeral proximal segment; (2) Methods: An SSM was created from 137 healthy humeri. A prediction for the proximal segment of the left humeri from eight healthy patients was made by combining the SSM with parameters. The predicted proximal segment was compared to the left proximal segment of the patients. Their left humerus was also compared to the contralateral (right) humerus; (3) Results: Eight modes explained 95% of the variation. Most deviations of the SSM prediction and the contralateral registration method were below the clinically relevant 2 mm distance threshold.; (4) Conclusions: An SSM combined with parameters is a suitable method to predict the proximal humeral segment when the contralateral CT scan is unavailable or the contralateral humerus is unhealthy, provided that the fracture pattern allows measurements of these parameters.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3