Functional Near-Infrared Spectroscopy-Based Evidence of the Cerebral Oxygenation and Network Characteristics of Upper Limb Fatigue

Author:

Li Feng1,Bi Jiawei1,Liang Zhiqiang1,Li Lu1ORCID,Liu Yu1,Huang Lingyan1

Affiliation:

1. Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China

Abstract

Objective: The objective of this research is to better understand the effects of upper limb fatigue on the cerebral cortex. The aim of this study was to investigate the characteristics of cerebral oxygenation and cortical functional connectivity in healthy adults after upper limb fatigue using functional near-infrared spectroscopy (fNIRS). Methods: Nineteen healthy adults participated in this study. The participants began exercising on an arm crank ergometer with no load, which was then increased by 0.2 kg per minute, maintaining a speed of at least 90 revolutions per minute during the exercise. Functional near-infrared spectroscopy covering the prefrontal cortex and motor area was used to monitor brain activity during rest and exercise. Heart rate and RPE were monitored during exercise to evaluate the degree of fatigue. Paired-sample t-tests were used to examine differences in the concentration of oxygenated hemoglobin (HbO2) and functional connectivity before and after fatigue. Results: All participants completed the exercise test that induced fatigue. We observed a significant decrease in HbO2 levels in the prefrontal and motor areas after exercise. In addition, brain network features showed a significant decrease in functional connectivity between the left and right motor cortices, between the motor and prefrontal cortices, and between both prefrontal cortices after fatigue. Conclusion: This study demonstrates that, in healthy adults, exercise-induced fatigue in the upper limbs significantly affects brain function. In particular, it leads to reduced functional connectivity between the motor cortex and the prefrontal cortex.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3