Immunomagnetic Delivery of Adipose-Derived Endothelial Progenitor Cells for the Repair of Renal Ischemia–Reperfusion Injury in a Rat Model

Author:

Wu Di1,Liu Jingyu1,Zhou Changcheng1,Ma Wenjie1,Zhou Liuhua1ORCID,Ge Yuzheng1ORCID,Jia Ruipeng1

Affiliation:

1. Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

Abstract

Renal ischemia–reperfusion injury (IRI) is a significant cause of acute kidney injury (AKI) and usually brings severe public health consequences. Adipose-derived endothelial progenitor cell (AdEPCs) transplantation is beneficial for AKI but suffers from low delivery efficiency. This study was conducted to explore the protective effects of magnetically delivered AdEPCs on the repair of renal IRI. Two types of magnetic delivery methods, namely the endocytosis magnetization (EM) method and the immunomagnetic (IM) method were fabricated using PEG@Fe3O4 and CD133@Fe3O4, and their cytotoxicities in AdEPCs were assessed. In the renal IRI rat model, magnetic AdEPCs were injected via the tail vein and a magnet was placed beside the injured kidney for magnetic guidance. The distribution of transplanted AdEPCs, renal function, and tubular damage were evaluated. Our results suggested that CD133@Fe3O4 had the minimum negative effects on the proliferation, apoptosis, angiogenesis, and migration of AdEPCs compared with PEG@Fe3O4. Renal magnetic guidance could significantly enhance the transplantation efficiency and the therapeutic outcomes of AdEPCs–PEG@Fe3O4 and AdEPCs–CD133@Fe3O4 in the injured kidneys. However, under renal magnetic guidance, AdEPCs–CD133@Fe3O4 had stronger therapeutic effects than PEG@Fe3O4 after renal IRI. The immunomagnetic delivery of AdEPCs with CD133@Fe3O4 could be a promising therapeutic strategy for renal IRI.

Funder

National Natural Science Foundation of China

Science and Education Strong Guard

Science and Technology Development Foundation of Nanjing Medical University

Jiangsu Provincial Social Development Project

Publisher

MDPI AG

Subject

Bioengineering

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3