Novel Bone Void Filling Cement Compositions Based on Shell Nacre and Siloxane Methacrylate Resin: Development and Characterization

Author:

Wilson Bridget Jeyatha1,Philipose Pampadykandathil Lizymol1

Affiliation:

1. Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India

Abstract

Shell nacre from Pinctada species has been extensively researched for managing bone defects. However, there is a gap in the research regarding using shell nacre powder as a cement with improved biological and physicochemical properties. To address this, bone void filling cement was formulated by incorporating shell nacre powder and an organically modified ceramic resin (ormocer). The shell nacre powder was specifically processed from the shells of Pinctada fucata and analysed using thermogravimetric analysis (TGA), X-ray diffraction spectroscopy, Fourier transform infrared (FTIR), and Raman spectroscopy, confirming the presence of organic constituents and inorganic aragonite. Trace element analysis confirmed the eligibility of shell nacre powder for biomedical applications. Next, the ormocer SNLSM2 was synthesized through a modified sol–gel method. FTIR, Raman, TGA, and transmission electron microscopy studies revealed the presence of a ladder-structured siloxane backbone and methacrylate side chain. To develop chemical curable composite shell nacre cement (SNC), different amounts of shell nacre (24%, 48%, and 72%) were added to the SNLSM2 resin, and the impact on the physicochemical properties of the cement was studied. Among the compositions, SNC 72 exhibited significantly lower linear polymerization shrinkage (0.4%) and higher compressive (>100 MPa) and flexural strength (>35 MPa). SNC 72 was radiopaque, and the exotherm generated during the cement curing was minimal. Cytotoxicity studies with L929 cells revealed the non-cytotoxic nature of the cement. Overall, the findings of this study prove that the shell nacre cement is a promising candidate for managing bone voids.

Funder

Kerala State Council for Science Technology and Environment

Indian Council for Medical Research

Publisher

MDPI AG

Subject

Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3