Functional Load Capacity of Teeth with Reduced Periodontal Support: A Finite Element Analysis

Author:

Dederichs Marco1ORCID,Joedecke Paul2,Weber Christian-Toralf2,Guentsch Arndt3ORCID

Affiliation:

1. Policlinic of Prosthetic Dentistry and Material Science, Centre for Dental Medicine, Jena University Hospital, D-07743 Jena, Germany

2. Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, D-39114 Magdeburg, Germany

3. School of Dentistry, Marquette University, Milwaukee, WI 53233, USA

Abstract

The purpose of this study was to investigate the functional load capacity of the periodontal ligament (PDL) in a full arch maxilla and mandible model using a numerical simulation. The goal was to determine the functional load pattern in multi- and single-rooted teeth with full and reduced periodontal support. CBCT data were used to create 3D models of a maxilla and mandible. The DICOM dataset was used to create a CAD model. For a precise description of the surfaces of each structure (enamel, dentin, cementum, pulp, PDL, gingiva, bone), each tooth was segmented separately, and the biomechanical characteristics were considered. Finite Element Analysis (FEA) software computed the biomechanical behavior of the stepwise increased force of 700 N in the cranial and 350 N in the ventral direction of the muscle approach of the masseter muscle. The periodontal attachment (cementum–PDL–bone contact) was subsequently reduced in 1 mm increments, and the simulation was repeated. Quantitative (pressure, tension, and deformation) and qualitative (color-coded images) data were recorded and descriptively analyzed. The teeth with the highest load capacities were the upper and lower molars (0.4–0.6 MPa), followed by the premolars (0.4–0.5 MPa) and canines (0.3–0.4 MPa) when vertically loaded. Qualitative data showed that the areas with the highest stress in the PDL were single-rooted teeth in the cervical and apical area and molars in the cervical and apical area in addition to the furcation roof. In both single- and multi-rooted teeth, the gradual reduction in bone levels caused an increase in the load on the remaining PDL. Cervical and apical areas, as well as the furcation roof, are the zones with the highest functional stress. The greater the bone loss, the higher the mechanical load on the residual periodontal supporting structures.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3