Experimental Models for Rare Melanoma Research—The Niche That Needs to Be Addressed

Author:

Ionita Ioana1ORCID,Malita Daniel1,Dehelean Cristina23,Olteanu Emilian234ORCID,Marcovici Iasmina23,Geamantan Andreea23,Chiriac Sorin1,Roman Andrea1,Radu Daniela1

Affiliation:

1. Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania

2. Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania

3. Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania

4. Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania

Abstract

Melanoma, the tumor arising from the malignant transformation of pigment-producing cells—the melanocytes—represents one of the most severe cancer types. Despite their rarity compared to cutaneous melanoma, the extracutaneous subtypes such as uveal melanoma (UM), acral lentiginous melanoma (ALM), and mucosal melanoma (MM) stand out due to their increased aggressiveness and mortality rate, demanding continuous research to elucidate their specific pathological features and develop efficient therapies. Driven by the emerging progresses made in the preclinical modeling of melanoma, the current paper covers the most relevant in vitro, in vivo, and in ovo systems, providing a deeper understanding of these rare melanoma subtypes. However, the preclinical models for UM, ALM, and MM that were developed so far remain scarce, and none of them is able to completely simulate the complexity that is characteristic to these melanomas; thus, a continuous expansion of the existing library of experimental models is pivotal for driving advancements in this research field. An overview of the applicability of precision medicine in the management of rare melanoma subtypes is also provided.

Publisher

MDPI AG

Subject

Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3