Electroconductive Nanofibrous Scaffolds Enable Neuronal Differentiation in Response to Electrical Stimulation without Exogenous Inducing Factors

Author:

Ranjbar Nika1ORCID,Bakhshandeh Behnaz1ORCID,Pennisi Cristian Pablo2ORCID

Affiliation:

1. Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran

2. Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, DK-9260 Gistrup, Denmark

Abstract

Among the various biochemical and biophysical inducers for neural regeneration, electrical stimulation (ES) has recently attracted considerable attention as an efficient means to induce neuronal differentiation in tissue engineering approaches. The aim of this in vitro study was to develop a nanofibrous scaffold that enables ES-mediated neuronal differentiation in the absence of exogenous soluble inducers. A nanofibrous scaffold composed of polycaprolactone (PCL), poly-L-lactic acid (PLLA), and single-walled nanotubes (SWNTs) was fabricated via electrospinning and its physicochemical properties were investigated. The cytocompatibility of the electrospun composite with the PC12 cell line and bone marrow-derived mesenchymal stem cells (BMSCs) was investigated. The results showed that the PCL/PLLA/SWNT nanofibrous scaffold did not exhibit cytotoxicity and supported cell attachment, spreading, and proliferation. ES was applied to cells cultured on the nanofibrous scaffolds at different intensities and the expression of the three neural markers (Nestin, Microtubule-associated protein 2, and β tubulin-3) was evaluated using RT-qPCR analysis. The results showed that the highest expression of neural markers could be achieved at an electric field intensity of 200 mV/cm, suggesting that the scaffold in combination with ES can be an efficient tool to accelerate neural differentiation in the absence of exogenous soluble inducers. This has important implications for the regeneration of nerve injuries and may provide insights for further investigations of the mechanisms underlying ES-mediated neuronal commitment.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3