Pullout Strength of Pedicle Screws Inserted Using Three Different Techniques: A Biomechanical Study on Polyurethane Foam Block

Author:

Wu Lien-Chen123ORCID,Hsieh Yueh-Ying12,Tsuang Fon-Yih45,Kuo Yi-Jie26,Chen Chia-Hsien127,Chiang Chang-Jung12ORCID

Affiliation:

1. Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan

2. Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan

3. Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan

4. Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei City 100225, Taiwan

5. Spine Tumor Center, National Taiwan University Hospital, Taipei City 100225, Taiwan

6. Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan

7. School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan

Abstract

Pullout strength is an important indicator of the performance and longevity of pedicle screws and can be heavily influenced by the screw design, the insertion technique and the quality of surrounding bone. The purpose of this study was to investigate the pullout strength of three different pedicle screws inserted using three different strategies and with two different loading conditions. Three pedicle screws with different thread designs (single-lead-thread (SLT) screw, dual-lead-thread (DLT) screw and mixed-single-lead-thread (MSLT) screw) were inserted into a pre-drilled rigid polyurethane foam block using three strategies: (A) screw inserted to a depth of 33.5 mm; (B) screw inserted to a depth of 33.5 mm and then reversed by 3.5 mm to simulate an adjustment of the tulip height of the pedicle screw and (C) screw inserted to a depth of 30 mm. After insertion, each screw type was set up with and without a cyclic load being applied to the screw head prior to the pullout test. To ensure that the normality assumption is met, we applied the Shapiro–Wilk test to all datasets before conducting the non-parametric statistical test (Kruskal–Wallis test combined with pairwise Mann–Whitney-U tests). All screw types inserted using strategy A had a significantly greater pullout strength than those inserted using strategies B and C, regardless of if the screw was pre-loaded with a cyclic load prior to testing. Without the use of the cyclic pre-load, the MSLT screw had a greater pullout strength than the SLT and DLT screws for all three insertion strategies. However, the fixation strength of all screws was reduced when pre-loaded before testing, with the MSLT screw inserted using strategy B producing a significantly lower pullout strength than all other groups (p < 0.05). In contrast, the MSLT screw using insertion strategies A and C had a greater pullout strength than the SLT and DLT screws both with and without pre-loading. In conclusion, the MSLT pedicle screw exhibited the greatest pullout strength of the screws tested under all insertion strategies and loading conditions, except for insertion strategy B with a cyclic pre-load. While all screw types showed a reduced pullout strength when using insertion strategy B (screw-out depth adjustment), the MSLT screw had the largest reduction in pullout strength when using a pre-load before testing. Based on these findings, during the initial screw insertion, it is recommended to not fully insert the screw thread into the bone and to leave a retention length for depth adjustment to avoid the need for screw-out adjustment, as with insertion strategy B.

Publisher

MDPI AG

Subject

Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3