Design and Modeling of Ultra-Compact Wideband Implantable Antenna for Wireless ISM Band

Author:

Zaki Ahmed1ORCID,Hamad Ehab2ORCID,Abouelnaga Tamer34ORCID,Elsadek Hala3,Khaleel Sherif5ORCID,Al-Gburi Ahmed6ORCID,Zakaria Zahriladha6ORCID

Affiliation:

1. Communication Department, Modern Academy for Engineering and Technology, Cairo 11571, Egypt

2. Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

3. Microstrip Circuits Department, Electronics Research Institute (ERI), Elnozha, Cairo 11843, Egypt

4. Higher Institute of Engineering and Technology, Kafr El-Shiekh 33511, Egypt

5. College of Engineering and Technology, Arab Academy for Science Technology and Maritime Transport, Aswan 81511, Egypt

6. Center for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tungal, Malacca 76100, Malaysia

Abstract

This paper proposes a wideband ultra-compact implantable antenna for a wireless body area network (WBAN). The proposed patch antenna works in the industrial, scientific, and medical (ISM) bands. The proposed patch antenna with an ultra-compact size (5 × 5 × 0.26 mm3) was designed with 29% wide bandwidth (about 670 MHz). This wide bandwidth makes the antenna unaffected by implantation in different human body parts. The miniaturization process passed many steps by adding many slots with different shapes in the radiating element as well as in the ground plane. A 50 Ω coaxial feeding excites the antenna to maintain matching and low power loss. The specific absorption rate (SAR) was calculated for health considerations. The result was within the standard limits of IEEE organizations and the International Commission on Non-Ionizing Radiation Protection (ICNRP). The antenna was tested in tissues with multiple layers (up to seven layers) and at various depths (up to 29 mm). The link margin was calculated, and the proposed antenna enables 100 Kbps of data to be transferred over a distance of 20 m and approximately 1 Mbps over a distance of 7 m. The proposed antenna was fabricated and tested. The measured S11 parameters and the simulated results using the Computer Simulation Technology (CST Studio) simulator were in good agreement.

Funder

Universiti Teknikal Malaysia Melaka

Publisher

MDPI AG

Subject

Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3