Native Agarose Gels and Contact Blotting as Means to Optimize the Protocols for the Formation of Antigen–Ligand Complexes

Author:

D’Ercole Claudia1,de Marco Ario1ORCID

Affiliation:

1. Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, P.O. Box 301, SI-5000 Nova Gorica, Slovenia

Abstract

Background: Protein complexes provide valuable biological information, but can be difficult to handle. Therefore, technical advancements designed to improve their manipulation are always useful. Methods: We investigated the opportunity to exploit native agarose gels and the contact blot method for the transfer of native proteins to membranes as means for optimizing the conditions for obtaining stable complexes. As a simple model of protein–protein interactions, an antigen–ligand complex was used in which both proteins were fused to reporters. Results: At each step, it was possible to visualize both the antigen, fused to a fluorescent protein, and the ligand, fused to a monomeric ascorbate peroxidase (APEX) and, as such, a way to tune the protocol. The conditions for the complex formation were adapted by modifying the buffer conditions, the concentration of the proteins and of the cross-linkers. Conclusions: The procedure is rapid, inexpensive, and the several detection opportunities allow for both the monitoring of complex stability and the preservation of the functionality of its components, which is critical for understanding their biomedical implications and supporting drug discovery. The overall protocol represents a handy alternative to gel filtration, uses very standard and ubiquitous equipment, and can be implemented rapidly and without specific training.

Funder

Javne agencije za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije

ICGEB

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3