Modern Subtype Classification and Outlier Detection Using the Attention Embedder to Transform Ovarian Cancer Diagnosis

Author:

Nobel S. M. Nuruzzaman1ORCID,Swapno S M Masfequier Rahman1ORCID,Hossain Md. Ashraful1ORCID,Safran Mejdl2ORCID,Alfarhood Sultan2ORCID,Kabir Md. Mohsin3ORCID,Mridha M. F.4ORCID

Affiliation:

1. Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh

2. Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia

3. Superior Polytechnic School, University of Girona, 17071 Girona, Spain

4. Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh

Abstract

Ovarian cancer, a deadly female reproductive system disease, is a significant challenge in medical research due to its notorious lethality. Addressing ovarian cancer in the current medical landscape has become more complex than ever. This research explores the complex field of Ovarian Cancer Subtype Classification and the crucial task of Outlier Detection, driven by a progressive automated system, as the need to fight this unforgiving illness becomes critical. This study primarily uses a unique dataset painstakingly selected from 20 esteemed medical institutes. The dataset includes a wide range of images, such as tissue microarray (TMA) images at 40× magnification and whole-slide images (WSI) at 20× magnification. The research is fully committed to identifying abnormalities within this complex environment, going beyond the classification of subtypes of ovarian cancer. We proposed a new Attention Embedder, a state-of-the-art model with effective results in ovarian cancer subtype classification and outlier detection. Using images magnified WSI, the model demonstrated an astonishing 96.42% training accuracy and 95.10% validation accuracy. Similarly, with images magnified via a TMA, the model performed well, obtaining a validation accuracy of 94.90% and a training accuracy of 93.45%. Our fine-tuned hyperparameter testing resulted in exceptional performance on independent images. At 20× magnification, we achieved an accuracy of 93.56%. Even at 40× magnification, our testing accuracy remained high, at 91.37%. This study highlights how machine learning can revolutionize the medical field’s ability to classify ovarian cancer subtypes and identify outliers, giving doctors a valuable tool to lessen the severe effects of the disease. Adopting this novel method is likely to improve the practice of medicine and give people living with ovarian cancer worldwide hope.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3