Screening of Microorganisms from Wastes and Identification of the Optimal Substrate for Biosurfactant Production

Author:

Biktasheva Liliya1ORCID,Gordeev Alexander1ORCID,Kirichenko Anastasia1,Kuryntseva Polina1,Selivanovskaya Svetlana1

Affiliation:

1. Institute of Environmental Sciences, Kazan Federal University, 18 Kremlyovskaya Street, 420008 Kazan, Russia

Abstract

The production of biosurfactants from organic wastes has received significant attention due to its potential cost savings. This study involved the isolation of biosurfactant-producing microorganisms from waste sources. The surfactant properties of the 37 studied isolates were assessed by reducing surface tension and their emulsifying properties, determined by the emulsification index E24. We assessed the ability of these isolated strains to produce biosurfactants using various waste substrates, namely potato peelings, waste cooking oil and sunflower cake. Our results showed that sunflower cake exhibited better growth and biosurfactant production for most of the strains studied. This highlights that sunflower cake is a potentially effective and economical substrate for the production of biosurfactants. The most effective strains allowing to achieve an emulsification index above 50% and reduce surface tension below 40 mN m−1 were Enterobacter sp. 2pp, strain 2wfo, Peribacillus sp. 1mo, Sphingomonas sp. 2mo, Ochrobactrum sp. 5mo, Shouchella sp. 6mo, Bacillus sp. 1os, Bacillus sp. 2os. Among these strains, both previously known strains as biosurfactant producers and previously unknown strains were found. Thus, we found that among representatives of the genus Sphingomonas there are effective producers of biosurfactants. The highest yield of biosurfactant on a medium with glycerol and glucose was shown by the Bacillus sp. 2os strain of 0.501 and 0.636 g L−1, respectively.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3