Origin of the Unexpected Enantioselectivity in the Enzymatic Reductions of 5-Membered-Ring Heterocyclic Ketones Catalyzed by Candida parapsilosis Carbonyl Reductases

Author:

Sim Byu Ri,Gu Jie,Ley Yvette,Luo ShengganORCID,Liu Yihan,Chen Qin,Nie YaoORCID,Zhao Yi-LeiORCID

Abstract

Candida parapsilosis carbonyl reductases (CpRCR) have been widely used for the reductive conversion of ketone precursors and chiral alcohol products in pharmaceutical industries. The enzymatic enantioselectivity is believed to be related to the shape complementation between the cavities in the enzymes and the substitutions of the ketone substrates. In this work, we reported an unexpected enantioselectivity in the enzyme reductions of dihydrofuran-3(2H)-one (DHF) to (S)-tetrahydrofuran-3-ol (DHF-ol, enantiomeric excess: 96.4%), while dihydrothiophen-3(2H)-one substrate (DHT) was unproductive under the same experimental conditions. To rationalize the exclusive S-configuration and the specific reactivity of DHF, we carried out molecular dynamics simulations for the reacting complexations of DHF with CpRCR, and DHT with CpRCR. Our calculations indicate that DHF preferentially binds to the small cavity near L119, F285, and W286, while the large cavity near the α1 helix was mainly occupied by solvent water molecules. Moreover, the pre-reaction state analysis suggests that the pro-S conformations were more abundant than the pro-R, in particular for DHF. This suggests that the non-polar interaction of substrate C4-C5 methylene contacting the hydrophobic side-chains of L119-F285-W286, and the polar interaction of funanyl oxygen exposing the solvent environment play important roles in the enantioselectivity and reactivity. The phylogenetic tree of CpRCR homologues implies that a variety of amino acid combinations at positions 285 and 286 were available and thereby potentially useful for redesigning enantioselective reductions of 5-membered-ring heterocyclic ketones.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3