Direct Z-Scheme Heterojunction α-MnO2/BiOI with Oxygen-Rich Vacancies Enhanced Photoelectrocatalytic Degradation of Organic Pollutants under Visible Light

Author:

Jia Litao,Li FanghuaORCID,Yang Chenjia,Yang Xiaonan,Kou Beibei,Xing Yonglei,Peng JuanORCID,Ni Gang,Cao Zhong,Zhang Shiyu,Zhao TongORCID,Jin XiaoyongORCID

Abstract

The degradation efficiency of photoelectrocatalytic (PEC) processes for the removal of organic pollutants is highly dependent on the performance of the photoelectroanode catalyst. The design of PEC systems with a direct Z-scheme charge transfer mechanism and visible light excitation is essential to enhance the degradation efficiency of organic compounds. Here, a α-MnO2/BiOI direct Z-scheme heterojunction photocatalyst was successfully synthesized through a convenient and feasible method. It is remarkable that the photoanode exhibited excellent PEC performance under visible light irradiation; a 95% removal rate of tetracycline (TC) pollutants was achieved within 2 h, and it had excellent stability and reusability, which was expected to degrade antibiotics efficiently and environmentally in harsh environments. The presence of oxygen vacancies (OVs) in the α-MnO2/BiOI heterojunction was confirmed by electron spin resonance technique, and the OVs acted as electron traps that contributed substantially to the separation efficiency of photogenerated carriers. ESR characterization showed that the main reactive radicals during TC degradation were •OH and •O2−. By analyzing the intermediates, the possible degradation pathways of TC were further analyzed and a suitable degradation mechanism was proposed. The toxicity changes in the degradation process were explored by evaluating the toxicity of the intermediates. This study provides a new way to enhance the performance of Bi-based semiconductor photocatalysts for the effective degradation of TC in water.

Funder

Natural Science Foundation of Ningxia Province

Key R & D Program of the Ningxia Hui Autonomous Region

West Light foundation of the Chinese Academy of Sciences

Lifting Project for Young Scientific and Technological Talents of Ningxia Province

Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3