Attosecond Time Delay Trends across the Isoelectronic Noble Gas Sequence

Author:

Grafstrom Brock1,Landsman Alexandra S.1

Affiliation:

1. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

Abstract

The analysis and measurement of Wigner time delays can provide detailed information about the electronic environment within and around atomic and molecular systems, with one the key differences being the lack of a long-range potential after a halogen ion undergoes photoionization. In this work, we use relativistic random-phase approximation to calculate the average Wigner delay from the highest occupied subshells of the atomic pairings (2p, 2s in Fluorine, Neon), (3p, 3s in Chlorine, Argon), (4p, 4s, 3d, in Bromine, Krypton), and (5p, 5s, 4d in Iodine, Xenon). The qualitative behaviors of the Wigner delays between the isoelectronic pairings were found to be similar in nature, with the only large differences occurring at photoelectron energies less than 20 eV and around Cooper minima. Interestingly, the relative shift in Wigner time delays between negatively charged halogens and noble gases decreases as atomic mass increases. All atomic pairings show large differences at low energies, with noble gas atoms showing large positive Wigner delays, while negatively charged halogen ions show negative delays. The implications for photoionization studies in halide-containing molecules is also discussed.

Funder

U.S. Department of Energy, Office of Basic Energy Sciences, Atomic, Molecular and Optical Sciences Program

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Reference62 articles.

1. Attosecond Metrology;Hentschel;Nature,2001

2. From Femtochemistry to Attophysics;Krausz;Phys. World,2001

3. X-Ray Pulses Approaching the Attosecond Frontier;Drescher;Science,2001

4. Physics of Attosecond Pulses Produced via High Harmonic Generation;Johnsson;Am. J. Phys.,2009

5. Attosecond Pulse Metrology;Orfanos;APL Photonics,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding attosecond streaking;Reports on Progress in Physics;2024-07-24

2. Attosecond Time Delay Trends across the Isoelectronic Noble Gas Sequence;Frontiers in Optics + Laser Science 2023 (FiO, LS);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3