The Thermal Properties and Nutritional Value of Biomass of Oleaginous Yeast Rhodotorula sp. during Glucose Fed-Batch Cultivation in Medium with Waste Nitrogen

Author:

Gientka Iwona1,Ostrowska-Ligęza Ewa2ORCID,Wirkowska-Wojdyła Magdalena2ORCID,Synowiec Alicja1

Affiliation:

1. Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences—SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland

2. Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland

Abstract

The biotechnological processing of oleaginous yeast biomass should be comprehensively managed using the zero-waste policy. This study focused on the biomass of the red yeast Rhodotorula obtained from a medium containing waste nitrogen. The cells accumulate lipids in intracellular lipid droplets; however, they are also rich in protein. Therefore, the nutritional value of lipid and protein, according to their fatty acid and amino acid composition, is a necessary step for practical application. For the very first time, this study focused on understanding the influence of temperature on powdered red yeast biomass to study components phase transition or chemical reactions by using DSC. Rhodotorula glutinis var. rubescens was cultivated in a glucose fed-batch in a potato wastewater medium, where the biomass yield was powdered, and lipid and fatty acid, protein, and amino acid compositions were determined. The DSC diagrams of red yeast biomass were characterized by two small and mild endothermic peaks, indicating the presence of fat and the presence of low molecular weight carbohydrates and a distinct peak associated with the presence of crystalline sugars. The nutritional quality of the lipid fraction as atherogenicity (0.223), thrombogenicity index (0.438), PUFA/SFA (0.24), and the n-6/n-3 ratio (3.275) was adequate for the recommendation and resulted from the fatty acid composition. The yeast protein was characterized by a high content of glutamic acid (99 mg/1 g of protein), and a value of essential amino acid index of protein suggested a superior amino acid composition compared to the FAO/WHO standard. Despite a high essential amino acid index (>120), yeast protein was characterized by a low content of Lys or Met.

Funder

Polish National Science Centre

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3