Human Gingival Fibroblasts Response to Different Endodontic Sealers: An In Vitro Study

Author:

Noites Rita1,Tavares Inês2ORCID,Cardoso Miguel1,Carreira Isabel M.2345,Bartolomeu Maria1ORCID,Duarte Ana S.1,Ribeiro Ilda P.2345

Affiliation:

1. Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, 3504-505 Viseu, Portugal

2. Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal

3. Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal

4. Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal

5. Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal

Abstract

Endodontic treatment aims to eliminate infection of the root canals and fill the dental pulp space. The biocompatibility studies of the sealers used in root canals obturation are crucial since they are applied in direct contact with periradicular tissues. Objective: The aim of this study was to evaluate the cytotoxicity of three root canal sealers—AH Plus, Bio MTA+, and Bio C sealer—on immortalized human gingival fibroblasts. Methods: AH Plus, Bio MTA+, and Bio C sealers were evaluated through incubation in real-time and material-conditioned media. Cells were incubated for 24 h and 72 h, at three different concentrations (1, 10, and 100 mg/mL) of each sealer. The cytotoxic activity of the sealers was assessed by Methyl tetrazolium (MTT) and Sulforhodamine B (SRB) assays. Cell morphology and cytogenetic alterations were studied microscopically. Results: MTT and SRB assays revealed similar results within both approaches. Cell culture exposed to sealers through incubation in real-time revealed a cytotoxic effect of AH Plus at 100 mg/mL. Material-conditioned media study revealed a cytotoxic effect of Bio MTA+ and Bio C, increasing with higher compound concentration and reaching 50% with 100 mg/mL. Regarding the cell’s morphology, Bio C sealer revealed a decrease in cell confluence and several morphological changes. AH Plus and Bio MTA+ did not seem to affect the cell confluence however morphology alterations were observed. In the cytogenetic study, a severe decrease of the mitotic index and a large number of chromosomal aberrations were observed. The present study represents an advance in the understanding of the biocompatibility of AH Plus, Bio MTA+, and Bio C sealers. These sealers demonstrated some cytotoxicity, depending on the concentration used. Although more validation studies are still needed, this study brings very relevant results in terms of cytotoxicity, cell morphology, and cytogenetic alterations. Conclusions: These results could help in the selection of the most appropriate compounds to be used in clinical practice as well as to determine the maximum recommended amounts of each sealer. Clinical Relevance: This study highlights the potential cytotoxic effects of three commonly used root canal sealers on human gingival fibroblasts, with varying degrees of impact depending on the concentration used. The results emphasize the importance of careful consideration when selecting and applying these materials in clinical practice.

Funder

Foundation for Science and Technology

FCT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3