Effective Removal of Malachite Green Dye from Water Using Low-Cost Porous Organic Polymers: Adsorption Kinetics, Isotherms, and Reusability Studies

Author:

Melhi Saad1ORCID,Alqadami Ayoub Abdullah2ORCID,Alosaimi Eid H.1,Ibrahim Gehan M.1,El-Gammal Belal1,Bedair Mahmoud A.1ORCID,Elnaggar Elsayed M.1ORCID

Affiliation:

1. Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia

2. Department of Pharmacy, Faculty of Medicine and Medical Science, University of Al-Razi, Sana’a 1152, Yemen

Abstract

In this study, triphenylaniline-based porous organic polymers (TPA-POPs) were successfully prepared by the Friedel–Crafts reaction and applied to adsorb malachite green (MG) dye from water. The TPA-POP was characterized using TEM, SEM, FTIR, 13C (CP/MAS) NMR, BET surface area, and XRD analysis. The results exhibited that the TPA-POP has a high surface area (1625.14 m2/g) with pore volume (0.353 cm3/g) and pore radius (1.57 nm) that reflect the high quantity of MG adsorbed on the TPA-POP. The polymer was evaluated as an excellent adsorbent for MG adsorption from water using the batch method. MG dye removal was optimized as 99.60% (at pH: 6.0, adsorbent dosage (m): 0.01 g, temperature (T): 45 °C, and contact time (t): 300 min). The kinetic data follow the Elovich model, while the isotherm data fit the Langmuir model well with uptake capacity (755.72 mg/g) at T: 45 °C. According to thermodynamic parameters, the adsorption process was endothermic and spontaneous. The adsorption of MG on the TPA-POP occurred via different mechanisms (π–π interaction, electrostatic attraction, and hydrogen bonding). Reusability experiments exhibited that the TPA-POP still maintained high removal efficiency (82.12%) after five cycles. In conclusion, the TPA-POP is a promising adsorbent owing to its cost-effectiveness, high adsorption capacity, high surface area, excellent reusability, and efficient MG removal from aqueous media.

Funder

Deanship of Graduate Studies and Scientific Research at the University of Bisha

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3