Gamma-Muricholic Acid Inhibits Nonalcoholic Steatohepatitis: Abolishment of Steatosis-Dependent Peroxidative Impairment by FXR/SHP/LXRα/FASN Signaling

Author:

Xie Yang1ORCID,Shen Feng2,He Yafang3,Guo Canjie4,Yang Ruixu1,Cao Haixia1,Pan Qin5ORCID,Fan Jiangao16

Affiliation:

1. Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China

2. Endoscopy Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China

3. Department of Pediatric Respiratory, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China

4. Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China

5. Research Center, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China

6. Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China

Abstract

Nonalcoholic steatohepatitis (NASH) reflects the outcome of steatosis-based peroxidative impairment. Here, the effect and mechanism of γ-muricholic acid (γ-MCA) on NASH were investigated on the basis of its actions in hepatic steatosis, lipid peroxidation, peroxidative injury, hepatocyte apoptosis, and its NAFLD activity score (NAS). The agonist action of γ-MCA on farnesoid X receptor (FXR) upregulated the small heterodimer partner (SHP) expression of hepatocytes. An increase in SHP attenuated the triglyceride-dominated hepatic steatosis which was induced in vivo by a high-fat high-cholesterol (HFHC) diet and in vitro by free fatty acids depending on the inhibition of liver X receptor α (LXRα) and fatty acid synthase (FASN). In contrast, FXR knockdown abrogated the γ-MCA-dependent lipogenic inactivation. When compared to their excessive production in HFHC diet-induced rodent NASH, products of lipid peroxidation (MDA and 4-HNE) exhibited significant reductions upon γ-MCA treatment. Moreover, the decreased levels of serum alanine aminotransferases and aspartate aminotransferases demonstrated an improvement in the peroxidative injury of hepatocytes. By TUNEL assay, injurious amelioration protected the γ-MCA-treated mice against hepatic apoptosis. The abolishment of apoptosis prevented lobular inflammation, which downregulated the incidence of NASH by lowering NAS. Collectively, γ-MCA inhibits steatosis-induced peroxidative injury to ameliorate NASH by targeting FXR/SHP/LXRα/FASN signaling.

Funder

National Natural Science Foundation of China

People’s Livelihood Project Of PuDong Committee On Science And Technology In Shanghai

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3