Potential Assessment of PRISMA Hyperspectral Imagery for Remote Sensing Applications

Author:

Shaik Riyaaz Uddien1,Periasamy Shoba2,Zeng Weiping1

Affiliation:

1. Super GeoAI Technology Inc., 229-116 Research Drive, Saskatoon, SK S7N3R3, Canada

2. Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India

Abstract

Hyperspectral imagery plays a vital role in precision agriculture, forestry, environment, and geological applications. Over the past decade, extensive research has been carried out in the field of hyperspectral remote sensing. First introduced by the Italian Space Agency ASI in 2019, space-borne PRISMA hyperspectral imagery (PHSI) is taking the hyperspectral remote sensing research community into the next era due to its unprecedented spectral resolution of ≤12 nm. Given these abundant free data and high spatial resolution, it is crucial to provide remote sensing researchers with information about the critical attributes of PRISMA imagery, making it the most viable solution for various land and water applications. Hence, in the present study, a SWOT analysis was performed for PHSI using recent case studies to exploit the potential of PHSI for different remote sensing applications, such as snow, soil, water, natural gas, and vegetation. From this analysis, it was found that the higher reflectance spectra of PHSI, which have comprehensive coverage, have greater potential to extract vegetation biophysical parameters compared to other applications. Though the possible use of these data was demonstrated in a few other applications, such as the identification of methane gases and soil mineral mapping, the data may not be suitable for continuous monitoring due to their limited acquisition, long revisiting times, noisy bands, atmospheric interferences, and computationally heavy processing, particularly when executing machine learning models. The potential applications of PHSI include large-scale and efficient mapping, transferring technology, and fusion with other remote sensing data, whereas the lifetime of satellites and the need for interdisciplinary personnel pose challenges. Furthermore, some strategies to overcome the aforementioned weaknesses and threats are described in our conclusions.

Funder

Super GeoAI Technology Inc.

Innovation Saskatchewan, Co., Labs

Canadian Agri-food Automation and Intelligence Network

Mitacs

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3