An Ensemble Approach of Feature Selection and Machine Learning Models for Regional Landslide Susceptibility Mapping in the Arid Mountainous Terrain of Southern Peru

Author:

Kumar Chandan1,Walton Gabriel1,Santi Paul1,Luza Carlos2

Affiliation:

1. Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA

2. Department of Geology, Geophysics and Mines, Universidad Nacional de San Agustín, Arequipa 04000, Peru

Abstract

This study evaluates the utility of the ensemble framework of feature selection and machine learning (ML) models for regional landslide susceptibility mapping (LSM) in the arid climatic condition of southern Peru. A historical landslide inventory and 24 different landslide influencing factors (LIFs) were prepared using remotely sensed and auxiliary datasets. The LIFs were evaluated using multi-collinearity statistics and their relative importance was measured to select the most discriminative LIFs using the ensemble feature selection method, which was developed using Chi-square, gain ratio, and relief-F methods. We evaluated the performance of ten different ML algorithms (linear discriminant analysis, mixture discriminant analysis, bagged cart, boosted logistic regression, k-nearest neighbors, artificial neural network, support vector machine, random forest, rotation forest, and C5.0) using different accuracy statistics (sensitivity, specificity, area under curve (AUC), and overall accuracy (OA)). We used suitable combinations of individual ML models to develop different ensemble ML models and evaluated their performance in LSM. We assessed the impact of LIFs on ML performance. Among all individual ML models, the k-nearest neighbors (sensitivity = 0.72, specificity = 0.82, AUC = 0.86, OA = 78%) and artificial neural network (sensitivity = 0.71, specificity = 0.85, AUC = 0.87, OA = 79%) algorithms showed the best performance using the top five LIFs, while random forest, rotation forest, and C5.0 (sensitivity = 0.76–0.81, specificity = 0.87, AUC = 0.90–0.93, OA = 82–84%) outperformed other models when developed using all twenty-four LIFs. Among ensemble models, the ensemble of k-nearest neighbors and rotation forest, k-nearest neighbors and artificial neural network, and artificial neural network and rotation forest outperformed other models (sensitivity = 0.72–0.73, specificity = 0.83–0.84, AUC = 0.86, OA = 79%) using the top five LIFs. The landslide susceptibility maps derived using these models indicate that ~2–3% and ~10–12% of the total study area fall within the “very high” and “high” susceptibility. The obtained susceptibility maps can be efficiently used to prioritize landslide mitigation activities.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference112 articles.

1. Suggested nomenclature for landslides;Cruden;Bull. Int. Assoc. Eng. Geol.,1990

2. Landslide susceptibility mapping on a global scale using the method of logistic regression;Lin;Nat. Hazards Earth Syst. Sci.,2017

3. Highland, L., and Bobrowsky, P.T. (2008). The Landslide Handbook: A Guide to Understanding Landslides, US Geological Survey.

4. Global fatal landslide occurrence from 2004 to 2016;Froude;Nat. Hazards Earth Syst. Sci.,2018

5. Guzzetti, F. (2006). Landslide Hazard and Risk Assessment, Rheinische Friedrich-Wilhelms-Universität Bonn.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3