Affiliation:
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
Abstract
Evapotranspiration (ET) estimations at high spatiotemporal resolutions in urban areas are crucial for extreme weather forecasting and water management. However, urban ET estimation remains a major challenge in current urban hydrology and regional climate research due to highly heterogeneous environments, human interference, and a lack of observations. In this study, an urban ET model, called the PT-Urban model, was proposed for half-hourly ET estimations at a 10 m resolution. The PT-Urban model was validated using observations from the Hotel Torni urban flux site during the 2018 growing season. The results showed that the PT-Urban model performed satisfactorily, with an R2 and root-mean-square error of 0.59 and 14.67 W m−2, respectively. Further analysis demonstrated that urban canopy heat storage and shading effects are essential for the half-hourly urban energy balance. Ignoring the shading effects led to a 38.7% urban ET overestimation. Modeling experiments further proved that flux footprint variations were critical for the accurate estimation of urban ET. The setting source areas either as an invariant 70% historical footprint or as a circle with a 1 km radius both resulted in poor performances. This study presents a practical method for the accurate estimation of urban ET with high spatiotemporal resolution and highlights the importance of real-time footprints in urban ET estimations.
Funder
National Natural Science Foundation of China
“Western Light”-Key Laboratory Cooperative Research Cross-Team Project of the Chinese Academy of Sciences
Natural Science Foundation of Hubei Province
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献