Impacts of Air Velocity Treatments under Summer Condition: Part I—Heavy Broiler’s Surface Temperature Response

Author:

Akter Suraiya,Cheng Bin,West Derek,Liu Yingying,Qian Yan,Zou Xiuguo,Classen JohnORCID,Cordova Hernan,Oviedo Edgar,Wang-Li LingjuanORCID

Abstract

Heavy broilers exposed to hot summer conditions experience fluctuations in surface temperatures due to heat stress, which leads to decreased performance. Maintaining a bird’s homeostasis depends on several environmental factors (temperature, relative humidity, and air velocity). It is important to understand the responses of birds to environmental factors and the amount of heat loss to the surrounding environment to create thermal comfort for the heavy broilers for improved performances and welfare. This study investigates the variation in surface temperatures of heavy broilers under high and low air velocity treatments. Daytime, age and bird location’s effect on the surface temperature variation was also examined. The experiment was carried out in the poultry engineering laboratory of North Carolina State University during summers of 2017, 2018, and 2019 as a part of a comprehensive study on the effectiveness of wind chill application to mitigate heat stress on heavy broilers. This live broiler heat stress experiment was conducted under two dynamic air velocity treatments (high and low) with three chambers per treatment and 44 birds per chamber. Surface temperatures of the birds were recorded periodically through the experimental treatment cycles (flocks, 35–61 d) with infrared thermography in the morning, noon, evening, and nighttime. The overall mean surface temperature of the broilers under two treatments was found to be 35.89 ± 2.37 °C. The variation in surface temperature happened due to air temperature, thermal index, air velocity, bird’s age, daytime, and position of birds inside the experimental chambers. The surface temperatures were found lower under high air velocity treatment and higher under low air velocity treatment. During the afternoon time, the broilers’ surface temperatures were higher than other times of the day. It was also found that the birds’ surface temperature increased with age and temperature humidity indices. Based upon the experimental data of five flocks, a simple linear regression model was developed to predict surface temperature from the birds’ age, thermal indices, and air velocity. It will help assess heavy broilers’ thermal comfort under heat stress, which is essential to provide a comfortable environment for them.

Funder

USDA-NIFA-AFRI

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3