Experimental Investigation and Prediction for Bending Creep of Glass Fiber-Reinforced Polymer Pultruded Tube

Author:

Cheng Kaige1,Wang Yaohui1,Fang Hai1,Qian Changgen2,Wu Peng1ORCID

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

2. Nanjing Jiangbei New Area Construction and Traffic Engineering Quality and Safety Supervision Station, Nanjing 210000, China

Abstract

This study experimentally investigates the bending creep behavior of a pultruded tube made of glass fiber-reinforced polymer (GFRP) and provides the corresponding fitting model as well as the life prediction equation. In the experiment process, the static bending test is performed first to determine the ultimate load-bearing capacities. Then, the creep experiments lasting 3000 h are conducted for GFRP pultruded tubes with 50%, 55%, 60%, and 65% fiber contents, subjected to four different load levels, i.e., 20%, 32.5%, 45%, 57.5%, and 70%, of the ultimate load-bearing capacity. The results indicate that the creep behavior exhibits linear viscoelasticity for load levels below 45%, while the specimens under load levels of 57.5% and 70% experienced creep failure before 1500 h. The test results indicate that for GFRP tubes, the higher the load level, the more pronounced the creep deformation, and specimens with a higher fiber content exhibit better creep resistance compared to those with lower fiber content. When the load level is less than 45%, the creep behavior appears as linear viscoelasticity. However, at a load level of 57.5%, the specimens experience shear failure, and at a load level of 70%, the specimens undergo overall bending failure. In addition, the prediction equation of creep deflection for GFRP pultruded tubes in linear viscoelasticity is developed by utilizing the Bailey–Norton model and the Findley model, and the prediction equation of creep life is acquired by fitting the experimental data with an exponential function.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference36 articles.

1. National Natural Science Foundation of China, Chinese Academy of Sciences (2016). Development Strategy of Disciplines in China: Civil Engineering and Engineering Mechanics.

2. Shen, G.L. (1996). Mechanics of Composite Materials, Tsinghua University Press.

3. Current status of carbon fiber reinforced polymer composites recycling and re-manufacturing;Hu;Compos. Part B Eng.,2020

4. Research progress in chemical recovery technology of fiber-reinforced polymer composites;Chen;CIESC J.,2023

5. Wu, J., Zhu, Y., and Li, C. (2023). Experimental Investigation of Fatigue Capacity of Bending-Anchored CFRP Cables. Polymers, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3