A 3D Parameterized BIM-Modeling Method for Complex Engineering Structures in Building Construction Projects

Author:

Yang Lijun12,Gao Xuexiang2,Chen Song2,Li Qianyao3,Bai Shuo1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

2. Shenzhen Nanshan District Construction and Works Department, Shenzhen 518000, China

3. School of Accounting, Wuhan Textile University, Wuhan 430200, China

Abstract

The structural components of large-scale public construction projects are more complex than those of ordinary residential buildings, with irregular and diverse components, as well as a large number of repetitive structural elements, which increase the difficulty of BIM-modeling operations. Additionally, there is a significant amount of inherent parameter information in the construction process, which puts forward higher requirements for the application and management capabilities of BIM technology. However, the current BIM software still has deficiencies in the parameterization of complex and irregular structural components, fine modeling, and project management information. To address these issues, this paper takes Grasshopper as the core parametric tool and Revit as the carrier of component attribute information. It investigates the parametric modeling logic of Grasshopper and combines the concepts of parameterization, modularization, standardization, and engineering practicality to create a series of parametric programs for complex structural components in building projects. This approach mainly addresses intricate challenges pertaining to the parametric structural shapes (including batch processing) and parametric structural attributes (including the batch processing of diverse attribute parameters), thereby ensuring the efficiency in BIM modeling throughout the design and construction phases of complex building projects.

Funder

State Key Research Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3