Assessment of Photocatalytic Nano-TiO2 Mortars’ Behavior When Exposed to Simulated Indoor Conditions of Glazed Buildings

Author:

Casarin Roberta Picanço1,Bersch Jéssica Deise1ORCID,Maia Joana2ORCID,Masuero Angela Borges1,Dal Molin Denise Carpena Coitinho1

Affiliation:

1. Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura (PPGCI), Núcleo Orientado para a Inovação da Edificação (NORIE), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha, 99, 7th Floor, Porto Alegre 90035-190, Brazil

2. CONSTRUCT-LFC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

Abstract

The application of nano-TiO2 as a photocatalytic agent in buildings’ internal surfaces has recently attracted attention to mitigate microorganism growth, soiling, and contamination in indoor environments. This work aimed at comparing the Rhodamine B (RhB) dye degradation efficiency of three different mortar compositions subjected to simulated internal radiation, in which nano-TiO2 (10 wt% of binder mass) was dispersed by ultrasonic and mechanical methods. Mortar specimens were produced with white Portland cement, hydrated lime, sand, and water in different volume proportions of 1:1:6 (cement:lime:sand), 1:3 (cement:sand), and 1:4 (cement:sand). The first stage of the research evaluated samples exposed to the natural outdoor environment and proved the efficiency of specimens’ photoactivity when covered by a glass layer. The second and principal phase of the study simulated indoor conditions in glazed buildings through artificial weathering in which the composition of 1:1:6 was mechanically dispersed and exhibited the highest global color change (ΔE) values for RhB staining. The main finding of the study was that the mortars exposed to simulated indoor conditions presented high ΔE grades, classified as easily perceived by the human eye. This demonstrates the photocatalytic efficiency in an internal building environment that receives radiation through a glass surface.

Funder

National Council for Scientific and Technological Development

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3