Effect of Fiber Type and Volume Fraction on Fiber Reinforced Concrete and Engineered Cementitious Composite Mechanical Properties

Author:

Abd Elmoaty Abd Elmoaty M.,Morsy Alaa M.ORCID,Harraz Abdelrhman B.

Abstract

Engineered cementitious composites (ECC) are an ultra-ductile cement-based composite material reinforced with short randomly distributed fibers. It differs from fiber reinforced concrete (FRC) in that it has a distinct ductile behavior. The study aims to assign mechanical properties, such as tensile, flexural, and compressive strength using locally available fiber rather than polyvinyl alcohol (PVA) fiber, which is not widely available in many countries, to ECC. PVA fiber is also very expensive. Instead of PVA, lightweight fibers, such as polypropylene, polyolefin, and glass fiber, as well as heavyweight fibers, such as steel fiber, were used. To assess the mechanical properties, the influences of curing, fiber volume fraction (2%, 4%, and 6%), fiber type, and fiber hybridization were adjusted in this study. The formation of multiple cracks along the specimen is the governing factor in ECC formation. The test results show that increasing the fiber volume fraction improves flexural and tensile strength. Water curing increased compressive, tensile, and flexural strength. Lightweight fiber hybridization has no effect on compressive strength, whereas heavyweight fiber hybridization improves compressive strength. For tensile and flexural strength, hybridization was associated with an improvement in all mechanical properties. The hybridization of lightweight fiber achieved ECC behavior at a lower volume fraction than the use of a single fiber volume. Relationships between tensile strength and flexural strength depending on the compressive strength of ECC were driven by demonstrating high performance.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference72 articles.

1. Engineered cementitious composites–a review;Chethan;Int. Res. J. Eng. Technol.,2015

2. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack;Wang;Constr. Build. Mater.,2017

3. Time-dependent assessment and deflection prediction of prestressed concrete beams with unbonded CFRP tendons;Lou;Compos. Struct.,2018

4. Monteiro, P. (2006). Concrete: Microstructure, Properties, and Materials, McGraw-Hill Publishing.

5. Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect;Vincent;Constr. Build. Mater.,2015

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3