Comparative Study of the Performance of Underwater Concrete between Anionic and Nonionic Anti-Washout Admixtures

Author:

Song Xiaoyun1ORCID,Zheng Heping2,Xu Lei1,Xu Tingting1,Li Qiuyu1

Affiliation:

1. Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China

2. Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China

Abstract

An investigation was carried out to study the influence of two types of anti-washout admixtures (AWAs) on the performance of underwater concrete, specifically, workability and washout resistance. The tested AWAs were hydroxypropyl methylcellulose (HPMC) and polyacrylamide (PAM) as nonionic AWAs and carboxymethyl starch (CMS) and polyanionic cellulose (PAC) as anionic AWAs. Rheological properties (slump and slump flow), washout resistance, and compressive strength were measured to evaluate the properties of the fresh and hardened concrete. The results indicate that anionic AWAs are more effective at improving workability and strength than nonionic AWAs in anti-washout underwater concrete. When the nonionic AWA dosage exceeded 0.3% (W/C = 0.45), the fluidity and air content were negatively impacted. Additionally, nonionic AWAs more readily alter the morphological structure of cement paste, affecting cement particle hydration and underwater concrete properties. Regarding the mechanical properties, compared with those of concrete without AWAs and with nonionic AWAs, the 28-day compressive strength of concrete with anionic AWAs reached 37 MPa, an increase of 151% and 131%, respectively. Compared with nonionic AWAs, concrete with anionic AWAs is more stable.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3