Prestress Force and General Excitation Identification for Plate-like Concrete Bridges

Author:

Wang Wensen1,Xiang Ziru12,Wang Yi1ORCID,Shao Xuejun3,Lu Jieyu1

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. MOE Key Lab of Disaster Forecast and Control in Engineering, Jinan University, Guangzhou 510632, China

3. Nantong Municipal Facilities Management Department, Nantong 226006, China

Abstract

Prestress force dominates the carrying capacity of concrete girders, and is vital for bridge health monitoring. Many vibrational-based methods have been proposed to determine prestress using bridge responses induced by known excitations, which means that they can barely use the normal traffic of in-service bridges as excitation to achieve long-term monitoring. Moreover, most studies are based on beam theory, which may not be precise for plate-like bridges. Hence, this paper establishes a motion equation for a prestressed slab via Kirchhoff’s plate theory and proposes a two-step procedure to assess the prestress and general excitation simultaneously through only bridge responses. The excitation is determined in the first step via the Load Shape function method and used as input for the prestress identification via state-space formulation in the second step. A numerical study on a prestressed plate subjected to a moving load is conducted. Considering different levels of measurement noise and load speed, the proposed method can determine the prestress and moving load with 7.33% and 10.18% error, respectively. A laboratory test on a prestressed box girder subjected to a fixed cyclic load is performed, the prestress and cyclic load are both determined to have good stability, and the errors are under 11.32%.

Funder

National Natural Science Foundation of China

Nantong Natural Science Foundation

MOE Key Lab of Disaster Forecast and Control in Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3