Improving Mixed-Mode Fracture Properties of Concrete Reinforced with Macrosynthetic Plastic Fibers: An Experimental and Numerical Investigation

Author:

Permanoon Ali1ORCID,Pouraminian Majid2ORCID,Khorami Nima3,GanjiMorad Sina4ORCID,Azarkhosh Hojatallah5ORCID,Sadrinejad Iman2ORCID,Pourbakhshian Somayyeh2

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Razi University, Kermanshah 6718958894, Iran

2. Department of Civil Engineering, Ramsar Branch, Islamic Azad University, Ramsar 4691966434, Iran

3. Department of Civil Engineering, University of Science and Culture, Tehran 1461968151, Iran

4. Department of Civil Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah 6714656141, Iran

5. Collage of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

Abstract

This article offers a comprehensive analysis of the impact of MSPF on concrete’s mechanical properties and fracture behavior. Combining findings from numerical simulations and laboratory experiments, our study validates numerical models against diverse fiber percentages and aggregate distributions, affirming their reliability. Key findings reveal that mixed-mode fracture scenarios in fiber-reinforced concrete are significantly influenced by the mode mixity parameter (Me), quantifying the balance between mode I and mode II fracture components, ranging from 1 (pure mode I) to 0 (pure mode II). The introduction of the effective stress intensity factor (Keff) provides a profound understanding of the material’s response to mixed-mode fracture. Our research demonstrates that as Me approaches zero, indicating shear deformation dominance, the concrete’s resistance to mixed-mode fracture decreases. Crucially, the addition of MSPF considerably enhances mixed-mode fracture toughness, especially when Me ranges between 0.5 and 0.9, resulting in an approximately 400% increase in fracture toughness. However, beyond a specific threshold (approximately 4% FVF), diminishing returns occur due to reduced fiber–cement mortar bonding forces. We recommend an optimal fiber content of around 4% by weight of the total concrete mixture to avoid material distribution disruption and strength reduction. The practical implications of these findings suggest improved design strategies for more resilient infrastructure, particularly in earthquake-resistant constructions and sustainable urban development. These insights provide a valuable framework for future research and development in concrete technology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3