Effect of Chemical Admixtures on the Working Performance and Mechanical Properties of Cement-Based Self-Leveling Mortar

Author:

Wang Yemin1,Wu Jiaming2ORCID,Su Lei3,Zhang Zizhuo2,Wang Zhenxing2,Lei Tianyu4,Lu Xiaolei5ORCID,Ye Zhengmao2

Affiliation:

1. Jinan Tianrongxiang Concrete Co., Ltd., Jinan 250100, China

2. School of Materials Science and Engineering, University of Jinan, Jinan 250022, China

3. Tiezheng Testing Technology Co., Ltd., Jinan 255001, China

4. Shandong Academy of Building Research Co., Ltd., Jinan 250001, China

5. Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China

Abstract

In this work, the effect of cellulose ether (CE), tartaric acid (TA), and polycarboxylate superplasticizer (PCE) on the working performance and mechanical properties of cement-based self-leveling mortar is investigated. According to the orthogonal experiment analysis, TA is identified as the most influential factor affecting the working performance, as indicated by factors such as fluidity, fluidity loss, and viscosity. Upon conducting a comprehensive assessment of the working performance and mechanical properties, the optimal parameters are found to be CE = 0.6 wt.‰, TA = 0.5 wt.‰, and PCE = 2.0 wt.‰. A univariate test highlights that that the working performance improves with the higher TA dosages. Specifically, the exponential reduction of fluidity loss corresponds with an increased TA content. Regarding the mechanical properties of cement-based self-leveling mortar, the compressive and flexural strength exhibit enhancement when the TA dosage remains below 0.4 wt.‰ at the early stage, implying that TA has some influence on the hydration process. Impressively, the 1 d compressive and flexural strengths surpass 7 MPa and 2 MPa, respectively, ensuring the viability of subsequent construction activities. Through an analysis of hydration heat, the effect mechanism of TA on the cement-based self-leveling mortar is derived. The result shows that the addition of TA decelerates the hydration process within the initial 10 h, followed by acceleration in the subsequent 20 h to 30 h. Consequently, this delayed formation of the early hydration product, ettringite, contributes to a more porous structure in the slurry, with low friction leading to a better working performance. A large number of hydration products, such as alumina gel and calcium–silicon–hydrate gel, presented in the hardened paste results in the good mechanical properties at 1 d. This study may lay a foundation for the optimization of the dosage of chemical admixtures in the self-leveling mortar and high-performance cement-based materials, and also impart valuable insights for practical applications extending to the realm of building construction and decoration.

Funder

National Natural Science Foundation of China

Shandong Province Key R&D Program

Ministry of Education’s cooperative Education Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3