Dynamic Response Characteristics of Composite Concrete Structures Subjected to Reactive Jet Impact

Author:

Su Chenghai1,Li Peiyu1,Zhang Jiahao1,Liu Aoxin1,Zheng Yuanfeng1ORCID,Wang Haifu1ORCID

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

Composite concrete structures, commonly found in urban infrastructures, such as highways and runways, are pivotal research object in the protection field. To study the dynamic response of composite concrete structures subjected to reactive jet penetration coupled with an explosive effect, a full-scale damage experiment of composite structures under the action of 150 mm caliber shaped charges was performed, to derive the dynamic damage modes of different concrete thicknesses under the combined kinetic and chemical energy damage effects. The results indicated that under aluminum jet penetration, concrete layers exhibited minor funnel craters and penetration holes. However, concrete layers displayed a variety of damage modes, including central penetration holes, funnel craters, bulges, and radial/circumferential cracks when subjected to the PTFE/Al jet. The area of the funnel crater expanded as the thickness of the concrete increased, while the height of the bulge and the number of radial cracks decreased. The diameter of penetration holes increased by 76.9% and the area of funnel crater increased by 578% in comparison to Al jet penetration damage. A modified-RHT concrete model that reflected concrete tensile failure was established, utilizing AUTODYN. Segmented numerical simulations of damage behavior were performed using the FEM-SPH algorithm and a restart approach combined with reactive jet characteristics. The spatial distribution characteristic of the reactive jet and the relationship between kinetic penetration and explosion-enhanced damage were obtained by the simulation, which showed good concordance with the experimental results. This study provides important reference data and a theoretical basis for the design of composite concrete structures to resist penetration and explosion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference37 articles.

1. Shafighfard, T., Kazemi, F., Bagherzadeh, F., Mieloszyk, M., and Yoo, D.Y. (2024). Computer-Aided Civil and Infrastructure Engineering, Wiley.

2. Size of craters produced by explosive charges on or above the ground surface;Ambrosini;Shock Waves,2002

3. Gupta, L., and Kumar, R. (2019). Recent Developments in Pavement Design, Modeling and Performance: Proceedings of the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018–The Official International Congress of the Soil-Structure Interaction Group in Egypt (SSIGE), Springer International Publishing.

4. Failure mechanisms of concrete slab–soil double-layer structure subjected to underground explosion;Tan;Shock Waves,2014

5. Malvern, L.E., and Ross, C.A. (1986). Dynamic Response of Concrete and Concrete Structures.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3