Distributionally Robust Demand Response for Heterogeneous Buildings with Rooftop Renewables under Cold Climates

Author:

Shi Xincong12,Wang Xinrui3,Ji Yuze3,Liu Zhiliang1,Han Weiheng1

Affiliation:

1. State Grid Shanxi Electric Power Company Limited, Taiyuan 030000, China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310000, China

3. State Grid Jincheng Power Supply Company, Jincheng 048000, China

Abstract

A considerable penetration of rooftop PV generation and increasing demand for heating loads will enlarge the peak-to-valley difference, imposing a great challenge to the reliable operation of distribution systems under cold climates. The objective of this paper is to establish a distributionally robust demand response (DR) model for building energy systems for suppressing peak-to-valley load ratios by exploiting cooperative complementarity and flexible transformation characteris-tics of various household appliances. The thermodynamic effect of buildings is modeled for harvesting intermittent renewable energy sources (RESs) on the building roof in the form of thermal energy storages to reduce RES curtailments and eliminate thermal comfort violations in cold weather. Furthermore, the Wasserstein metric is adopted to develop the ambiguity set of the uncertainty probability distributions (PDs) of RESs, and thus, only historical data of RES output is needed rather than prior knowledge about the actual PDs. Finally, a computationally tractable mixed-integer linear programming reformulation is derived for the original distributionally robust optimization (DRO) model. The proposed DRO-based DR strategy was performed on multiple buildings over a 24 h scheduling horizon, and comparative studies have validated the effectiveness of the proposed strategy for building energy systems in reducing the peak/valley ratio and decreasing operation costs.

Funder

Science and Technology Project of State Grid Shanxi Electric Power Company Limited

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3