Mist Spraying as an Outdoor Cooling Spot in Hot-Humid Areas: Effect of Ambient Environment and Impact on Short-Term Thermal Perception

Author:

Wang Pin1ORCID,Lu Sumei1,Wu Xiaowei1,Tian Jun1ORCID,Li Ning1

Affiliation:

1. School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China

Abstract

Mist spraying is an active cooling technology used to alleviate heat stress during hot summers. However, there is limited experimental research on the relationship between ambient thermal parameters and spray cooling efficiency, as well as the transient and short-term thermal perceptions of local residents. In this study, an intermittent mist spraying system was set up, and environmental measurements, coupled with questionnaire surveys, were conducted under typical high temperature and still air conditions. The aim was to investigate the relationship among environmental factors, spray cooling effects, and dynamic improvements in human thermal perception. The results showed that higher ambient temperatures resulted in a more significant cooling effect, with a maximum value of 5.68 °C. Upon entering the spraying area, people experienced a large perceptual change, with the mean thermal sensation and thermal comfort change covering 73% and 62% of the total change ranges, respectively. This study indicated that the mist spray system can be activated if the ambient temperature exceeds 32.5 °C, helping local residents maintain a physiological state close to slightly hot and neutral comfort. These findings suggest that mist spraying can be applied in environmental design as an outdoor cooling spot to mitigate urban overheating, providing valuable insights for the application of mist spray systems in actual outdoor settings in hot-humid areas.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Humanities and Social Science Research Program of the Ministry of Education

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3