Frequency Domain Analysis of Alongwind Response and Study of Wind Loads for Transmission Tower Subjected to Downbursts

Author:

Zhong YongliORCID,Li Shun,Jin Weichen,Yan Zhitao,Liu Xinpeng,Li Yan

Abstract

Downburst is one of the high-intensity winds that cause transmission tower failures. The regulations of transmission tower-line systems under downburst wind loads cannot meet the design requirements at present. In this paper, the calculation formulas of the background and resonant components of transmission tower under downburst wind loads are obtained, based on the modal analysis theory of non-stationary wind for the single-degree-of-freedom system in the frequency domain. The effects of structural dynamic characteristics, damping ratio, and mean wind speed vertical profile on dynamic effect on structural response are discussed. Then the equivalent static wind load (ESWL) is obtained according to the maximum response and compared with the finite element method (FEM) in the time domain. Applications of these formulas are addressed to the cases from the empirical model of Holmes and field record of a rear flank downdraft (RFD). The results show that the maximum responses obtained by the current formulas match well with those from the modal decomposition method and dynamic analysis with FEM. The internal forces of tower members calculated by ESWL based on maximum response are closer to the results from FEM than those calculated by downburst loads recommended in ASCE guidelines. The presented framework can be used to assist the wind-resistant design of transmission towers considering downburst wind load.

Funder

National Natural Science Foundation of China

the Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference78 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3