Optimal Design of Nonlinear Negative-Stiffness Damper with Flexible Support for Mitigating Cable Vibration

Author:

Liu Guanliang1ORCID,Zhou Peng1,Yu Tong1,Li Zeping1

Affiliation:

1. State Key Laboratory for Geomechanics & Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Negative-stiffness damper is a promising device to mitigate cable vibrations effectively. In contrast to traditional rigid supports, recent study has found that flexible supports are actually beneficial for enhancing the performance of negative-stiffness dampers. This study extends the understanding of the impact of support flexibility under nonlinear condition, followed by an optimization process to obtain required negative-stiffness dampers and corresponding supports. First, taking damping nonlinearity into account, a unified model is established for the negative-stiffness damper with flexible support. Theoretical equivalent negative stiffness and damping are obtained for a linear case, followed by numerical verification. Thereafter, equivalent parameters under a friction case are presented. Experiments are conducted to validate the analytical derivation. Then, problem formulation is developed for the controlled cable. Optimization process is proposed to determine the required negative-stiffness damper and support for multimodal cable vibration. A series of numerical simulations are performed to demonstrate the design process. Moreover, nonlinear examples are presented to show the potential for improving control performance. As indicated by the research results, a flexible support is capable of amplifying the equivalent negative stiffness and damping under linear and nonlinear conditions. For multimodal cable vibration, it is sufficient to determine the optimized negative stiffness and support by only considering the highest mode. Nonlinear negative-stiffness dampers exhibit superior performance due to the leakage of vibration energy toward high-order modes.

Funder

Jiangsu Province Innovation and Entrepreneurship Doctoral Program 2022

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3