Operational Strategy of a DC Inverter Heat Pump System Considering PV Power Fluctuation and Demand-Side Load Characteristics

Author:

Li Yilin12,Lu Yang1,Sun Jie3,Wang Tianhang1,Zong Shiji1,Zhou Tongyu4ORCID,Wang Xin1

Affiliation:

1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Key Laboratory of Ecology and Energy Saving Study of Dense Habitat, Ministry of Education, Shanghai 200092, China

3. BSE Energy Technology (Suzhou) Co., Ltd., Suzhou 215000, China

4. Department of Architecture and Built Environment, University of Nottingham Ningbo China, Ningbo 315100, China

Abstract

With the increase in application of solar PV systems, it is of great significance to develop and investigate direct current (DC)-powered equipment in buildings with flexible operational strategies. A promising piece of building equipment integrated in PV-powered buildings, DC inverter heat pump systems often operate with strategies either focused on the power supply side or on the building demand side. In this regard, the aim of this study was to investigate the operational strategy of a DC inverter heat pump system for application in an office building with a PV power system. Firstly, the PV power fluctuation and demand-side load characteristics were analyzed. Then, a series of heat transfer and heat pump system models were developed. A reference building model was developed for simulating the performance of the system. A control logic of the DC inverter heat pump was proposed with a certain level of flexibility and capability considering both the characteristics of the PV power generation and the demand-side heating load. MATLAB/Simulink 2021 software was used for simulation. The simulation results show that the DC inverter heat pump is able to regulate its own power according to the change signal of the bus voltage such that the DC distribution network can achieve power balance and thus provide enough energy for a room. This study can provide a reference for developing flexible operational strategies for DC inverter heat pump systems. The proposed strategy can also help to improve the systems’ performance when they are applied in buildings with distributed PV systems.

Funder

National Natural Science Foundation of China

Key Laboratory of Ecology and Energy Saving Study of Dense Habitat, Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3