Research on the Classification of Concrete Sulfate Erosion Types in Tumushuke Area, Xinjiang

Author:

Ma Yuwei1ORCID,Jiang Xuemei1,Li Junfeng1ORCID,Li Gang1,Huang Wei2,Chang Weidong1,Cao Guangming2,Yu Ziwei1

Affiliation:

1. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China

2. Xinjiang Qiankun Engineering Construction Group, Tumushuke City 843900, China

Abstract

Tumushuke, a significant node of “the China–Pakistan Economic Corridor” and “the Silk Road Economic Belt”, is strategically located in the southern region of Xinjiang. Due to the widespread distribution of its salty soils, concrete construction safety is significantly compromised. The construction of this project used sulfate-resistant cement, which was costly to construct. Six groups with varying sulfate immersion concentrations were set up to perform sulfate erosion tests and sulfate freeze–thaw coupling tests, respectively, based on the survey of the distribution of sulfate concentration in the area. The Tumushuke area’s concrete erosion kinds were classified using a microanalysis of the degraded concrete. The findings indicate that the concrete primarily exhibits gypsum-type erosion when the sulfate concentration is greater than 20,000 mg/kg, ettringite–gypsum-type erosion when the sulfate concentration is between 15,000 and 20,000 mg/kg, and ettringite-gypsum-type erosion when the sulfate concentration is less than 15,000 mg/kg. The erosion product, carbon–sulfur silica-calcite, also occurs under sulfate freeze–thaw coupling. In the Tumushuke area, ettringite-type erosion damage is primarily found in low-sulfate areas in the southwest and a small portion of the northeast. In contrast, higher-sulfate areas in the central northward area are primarily affected by ettringite–gypsum and gypsum-type erosion damage. The results of this study can provide a basis for adopting different anti-sulfate erosion measures for engineering construction in different regions.

Funder

Natural Science Foundation of China

Science and Technology Project of Bingtuan

Sichuan regional innovation cooperation project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3