Impact of Electronic Waste Glass on the Properties of Cementitious Materials

Author:

Malaiškienė Jurgita1,Bekerė Karolina1

Affiliation:

1. Laboratory of Composite Materials, Institute of Building Materials, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania

Abstract

The article analyses the impact of two different types of dispersive glass on cement hydration and compressive strength at 7 and 28 days. The study employed dispersive glass from various LCDs (TV sets, computer monitors, smart phones), characterised by a composition of approximately 8% SrO, and dispersive glass from washing machines, which consists mainly of SiO2, Na2O, and CaO. The chemical composition and particle-size distribution of different types of dispersive glass were analysed. The study compares the effect of electronic waste glass on cement hydration by evaluating the amount and rate of heat released during the process. In addition, the results of X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) are provided. Different types of glass were determined to have a similar effect on the physical and mechanical properties as well as the mineral composition of cementitious samples: density and UPV decrease up to 6% and compressive strength decreases by about 30%, when 5–20% of cement was replaced by glass waste. However, more prominent differences were observed in the workability of the mixtures: the waste glass from home appliances increased the spread by up to 25%, while the waste glass from electronic devices decreased the spread compared to the reference sample by approximately 20%. The mixtures modified with the waste glass of electronic devices had a higher degree of early hydration (96%) due to the higher water absorption of the mixtures compared to the waste glass of home appliances (88%).

Funder

Civil Engineering Research Centre

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3