Load Identification in Steel Structural Systems Using Machine Learning Elements: Uniform Length Loads and Point Forces

Author:

Tusnin Alexander R.1,Alekseytsev Anatoly V.1ORCID,Tusnina Olga A.1ORCID

Affiliation:

1. Institute of Industrial and Civil Engineering, National Research Moscow State University of Civil Engineering, 129337 Moscow, Russia

Abstract

Actual load identification is a most important task solved in the course of (1) engineering inspections of steel structures, (2) the design of systems rising or restoring the bearing capacity of damaged structural frames, and (3) structural health monitoring. Actual load values are used to determine the stress–strain state (SSS) of a structure and accomplish various engineering objectives. Load identification can involve some uncertainty and require soft computing techniques. Towards this end, the article presents an integrated method combining basic provisions of structural mechanics, machine learning, and artificial neural networks. This method involves decomposing structures into primitives, using machine learning data to make projections, and assembling structures to make final projections for steel frame structures subjected to elastic strain. Final projections serve to identify parameters of point forces and loads distributed along the length of rods. The process of identification means checking the difference between (1) weight coefficient matrices applied to unit loads and (2) actual loads standardized using maximum load values. Cases of neural network training and parameters identification are provided for simple beams. The aim of this research is to enhance the reliability and durability of steel structures by predicting consequences of unfavorable load, including emergency impacts. The novelty of this study lies in the co-use of artificial intelligence elements and structural mechanics methods to predict load parameters using actual displacement curves of structures. This novel approach will enable engineering inspection teams to predict unfavorable load peaks, prevent emergency situations, and identify actual causes of emergencies triggered by excessive loading.

Funder

National Research Moscow State University of Civil Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3