Comparative Investigation of Axial Bearing Performance and Mechanism of Continuous Flight Auger Pile in Weathered Granitic Soils

Author:

Zhang Xuqun1,Li Zhili1,Zhang Siyuan1,Sui Yaohua1,Liu Chengjun1,Xue Zilong1,Li Zhaofeng2ORCID

Affiliation:

1. Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou 510080, China

2. School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

Axial bearing performance and mechanism of continuous flight auger (CFA) pile in weathered granitic soils, i.e., a widespread special soil in South China, were investigated by field test in this study. Load–settlement responses of four CFA piles were examined, and evolutions of shaft/base resistances were captured by ultra-weak fiber Bragg gratings (UWFBG) with a reflectivity ≤−40 dB. Performances of CFA piles were compared with those of a slurry displacement (SD) pile at the same site, thirteen pretensioned spun high-strength concrete (PHC) piles in the literature and empirical data in design code. Test results show that the ultimate bearing capacity of the CFA pile is highest among different pile types, and typically is twice that of the SD pile. Again, CFA pile produces the highest shaft resistances at 140 kPa and 153 kPa in two weathered granitic soils, while the base resistance of 3080 kPa is between those of the SD pile and the PHC pile. By field excavation, the superior mechanism of the CFA pile is suggested to avoid the formation of in-between bentonite layers and prevent preferential baseflow along fissures, both of which can weaken the soil–pile interface. Overall, this study provides fundamental data through UWFBG and explanations based on field observations which underpin the need for developing a design code specified for CFA piles in South China.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3