Multifractal Characteristics and Displacement Prediction of Deformation on Tunnel Portal Slope of Shallow Buried Tunnel Adjacent to Important Structures

Author:

Zhou Xiannian1,He Yurui1,Zhang Wanmao2ORCID,Liu Dunwen2ORCID

Affiliation:

1. Road & Bridge International Co., Ltd., Beijing 101100, China

2. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

The tunnel portal section is often in extremely weak and fragmented strata, and the deformation of the portal side and slope will affect the stability of the surrounding rock and the tunnel-supporting structure. However, the deformation characteristics and displacement development patterns of slopes in the tunnel portal section are not clear. In this paper, the multifractal characteristics and displacement prediction of the deformation sequence of the tunnel portal slope at of a weak and water-rich shallow buried tunnel adjacent to an important structure are studied in depth. Combined with the deformation characteristics of the tunnel portal slope, a suitable slope monitoring and measurement scheme is designed to analyze the deformation pattern of the tunnel portal slope. Based on the multifractal detrended fluctuation analysis (MF-DFA) method, the multifractal characteristics of the deformation monitoring sequences at each monitoring point of the tunnel portal slope are analyzed. The multifractal characteristics of displacement sequences at different monitoring points of the tunnel portal slope are consistent with the actual monitoring results. Furthermore, the Long Short-Term Memory (LSTM) model is optimized using the Particle Swarm Optimization (PSO) algorithm to predict the deformation of the tunnel portal slope. The results show that the maximum mean square error (MSE) of the horizontal displacement test set prediction results is 0.142, and the coefficient of determination (R2) is higher than 91%. The maximum value of MSE for vertical displacement test set prediction is 0.069, and the R2 are higher than 91%. The study shows that the performance of the PSO-LSTM prediction model can meet the requirements for predicting the displacement of the tunnel portal slope. Based on the MF-DFA method and PSO-LSTM prediction model, the fluctuation characteristics of the displacement value of the tunnel portal section can be accurately identified and the displacement development pattern can be effectively predicted. The conclusions of the study are of great practical significance for the safe construction of the tunnel portal section.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3