Effect of Elevated Temperatures on Compressive Strength, Ultrasonic Pulse Velocity, and Transfer Properties of Metakaolin-Based Geopolymer Mortars

Author:

Ezzedine El Dandachy Mohamad1ORCID,Hassoun Lovey1,El-Mir Abdulkader23ORCID,Khatib Jamal M.14ORCID

Affiliation:

1. Faculty of Engineering, Beirut Arab University, Beirut P.O. Box 1105, Lebanon

2. Department of Civil and Environmental Engineering, University of Balamand, El Kourah P.O. Box 100, Lebanon

3. Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

4. Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton DY3 3PX, UK

Abstract

This study aims to investigate the impact of moderate and elevated temperatures on compressive strength, mass loss, ultrasonic pulse velocity (UPV), and gas permeability of mortars made using metakaolin (MK) or Ordinary Portland cement (OPC). The geopolymer mortar comprises MK, activated by a solution of sodium hydroxide (SH) and sodium silicate (SS) with a weight ratio of SS/SH equal to 2.5. For most of the tests, the MK and OPC mortar specimens were cured for 7 and 28 days before exposure to elevated temperatures, ranging from 100 °C to 900 °C in increments of 100 °C. In the permeability tests, conducted at temperatures ranging from 100 °C to 300 °C in 50 °C increments, the results revealed significant findings. When exposed to 200 °C, MK geopolymer mortar demonstrated an increase in compressive strength by 83% and 37% for specimens initially cured for 7 and 28 days, respectively. A strong polynomial correlation between UPV and compressive strength in MK mortar was observed. Prior to heat exposure, the permeability of MK mortar was found to be four times lower than that of OPC mortar, and this difference persisted even after exposure to 250 °C. However, at 300 °C, the intrinsic permeability of MK mortar was measured at 0.96 mD, while OPC mortar exhibited 0.44 mD.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3