Abstract
The agriculture sector faces crop losses every year due to diseases around the globe, which adversely affect food productivity and quality. Detecting and identifying plant diseases at an early stage is still a challenge for farmers, particularly in developing countries. Widespread use of mobile computing devices and the advancements in artificial intelligence have created opportunities for developing technologies to assist farmers in plant disease detection and treatment. To this end, deep learning has been widely used for disease detection in plants with highly favorable outcomes. In this paper, we propose an efficient convolutional neural network-based disease detection framework in plum under true field conditions for resource-constrained devices. As opposed to the publicly available datasets, images used in this study were collected in the field by considering important parameters of image-capturing devices such as angle, scale, orientation, and environmental conditions. Furthermore, extensive data augmentation was used to expand the dataset and make it more challenging to enable robust training. Investigations of recent architectures revealed that transfer learning of scale-sensitive models like Inception yield results much better with such challenging datasets with extensive data augmentation. Through parameter quantization, we optimized the Inception-v3 model for deployment on resource-constrained devices. The optimized model successfully classified healthy and diseased fruits and leaves with more than 92% accuracy on mobile devices.
Funder
Higher Education Commission, Pakistan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference32 articles.
1. Using Deep Learning for Image-Based Plant Disease Detection
2. Smallholders, Food Security and the Environment,2013
3. Food Safety
https://www.who.int/news-room/fact-sheets/detail/food-safety
4. Agricultural Statistics of Pakistan
http://www.amis.pk/Agristatistics/Data/HTML%20Final/Plum/Production.html
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献