Comparative Genome Analysis of a Pathogenic Erysipelothrix rhusiopathiae Isolate WH13013 from Pig Reveals Potential Genes Involve in Bacterial Adaptions and Pathogenesis

Author:

Yang Longsheng,Zhu Yongwei,Peng ZhongORCID,Ding Yi,Jie Kai,Wang Zijian,Peng Ying,Tang Xibiao,Wang XiangruORCID,Chen Huanchun,Tan Chen

Abstract

Erysipelothrix rhusiopathiae is a common pathogen responsible for pig erysipelas. However, the molecular basis for the pathogenesis of E. rhusiopathiae remains to be elucidated. In this study, the complete genome sequence of the E. rhusiopathiae strain WH13013, a pathogenic isolate from a diseased pig, was generated using a combined strategy of PacBio RSII and Illumina sequencing technologies. The strategy finally generated a single circular chromosome of approximately 1.78 Mb in size for the complete genome of WH13013, with an average GC content of 36.49%. The genome of WH13013 encoded 1633 predicted proteins, 55 tRNAs, as well as 15 rRNAs. It contained four genomic islands and several resistance-associated genes were identified within these islands. Phylogenetic analysis revealed that WH13013 was close to many other sequenced E. rhusiopathiae virulent strains. The comprehensive comparative analysis of eight E. rhusiopathiae virulent strains, including WH13013, identified a total of 1184 core genes. A large proportion (approximately 75.31%) of these core genes participated in nutrition and energy uptake and metabolism as well as the other bioactivities that are necessary for bacterial survival and adaption. The core genes also contained those encoding proteins participating in the biosynthesis and/or the components of the proposed virulence factors of E. rhusiopathiae, including the capsule (cpsA, cpsB, cpsC), neuraminidase (nanH), hyaluronidase (hylA, hylB, hylC), and surface proteins (spaA, rspA, rspB). The obtaining of the complete genome sequence of this virulent strain, WH13013, and this comprehensive comparative genome analysis will help in further studies of the genetic basis of the pathogenesis of E. rhusiopathiae.

Funder

Ministry of Science and Technology of the People's Republic of China

Department of Science and Technology, Hubei Provincial People's Government

Ministry of Agriculture and Rural Affairs of the People's Republic of China

Publisher

MDPI AG

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3