Pharmaceuticals Removal by Ozone and Electro-Oxidation in Combination with Biological Treatment

Author:

Audino Francesca1ORCID,Arboleda Judith1,Petrovic Mira2,Cudinach Ricard García3,Pérez Sonia Sanchis1

Affiliation:

1. Leitat Technological Center, 08225 Terrassa, Spain

2. Catalan Institute for Water Research (ICRA), 17003 Girona, Spain

3. Deisa Industrial Water Solutions SL, 08820 Barcelona, Spain

Abstract

This study investigated the efficiency of two advanced oxidation processes (AOPs), ozonation (O3), and electrochemical oxidation (EO), applied individually or in combination, in the removal of contaminants of emerging concern (CECs) contained in hospital wastewaters, focusing on pharmaceuticals. The optimisation of the single technologies was performed using synthetic wastewater composed of four refractory pharmaceuticals, (carbamazepine-CBZ, lorazepam-LZP, ketoprofen-KTP, 10,11-epoxicarbamazepine-E-CBZ), first alone and then in mixture, in an initial concentration of 1 mg L−1 each. Once the best operational conditions for EO and O3 were defined, their combination (both simultaneous and sequential) was evaluated for the mixture of the selected pharmaceuticals. The treatment solution that showed the best performance was the simultaneous combination of O3 and EO. This treatment was validated using real hospital wastewater previously treated through a moving bed biofilm reactor (MBBR), evaluating its viability by testing the toxicity of the final effluent via Vibrio fischeri inhibition tests. The obtained results showed that the simultaneous combination of O3 and EO as the polishing step after a biological treatment is a very promising solution for hospital wastewater treatment, allowing for obtaining a non-toxic effluent and full degradation of refractory compounds. The disinfection potential of the proposed AOP was also assessed by determining Escherichia coli inactivation potential.

Funder

EFLUCOMP

European Regional Development Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3